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Abstract— Based on detailed three-dimensional finite element analysis. the near-tip field of a thin
elastic plate remotely subjected to Mode [T antisymmetrical loading is investigated. The computed
results show the transition to a three-dimensional state to oceur near the radial distance from the
crick tip of 1.5 times the plate thickness. [n the close vicinity of the crack front, the asymptotic
steess field is characterized by a combination of planc strain Mode 1T and anti-plane Mode 1T
singular (17 \/r) ficlds, The domain of such ficlds extends approximately 0.5% of the thickness in
the ricdinl divection. The mixed-mode stress intensity factors along the crack front are determined
from 3-D conscrvation integrals, and unlike the case of symmetrical loading, their magnitudes are
greater towards the free surfuce. Near the intersection of the crack front and free surface, the stress
field converges to the antisymmctrical corner singularity solution, The asymptotic form of stress
ncir the intersection under general loading conditions is presented, along with the corner stress
intensity fuctors.

L INTRODUCTION

In a thin plate containing a through-crack, a neurly plance stress condition exists everywhere,
except in regions near the crack front, where the state of stress is three-dimensional. In a
previous study (Nakamura and Parks, 1988), we considered the near crack front region of
a thin plate remotely subjected to Mode [ in-plane symmetrical loading conditions. A thin
plate is defined as a cracked plate which contains an annular region, outside the near crack
front 3-D field, where deformation is essentially characterized by a plane stress K-field
solution. Under such conditions, the near crack front ficld is independent of any in-plane
dimensions, and the magnitude of [oading can be conveniently given by the remote stress
intensity fuctor. The Mode [ analysis revealed strong three-dimensionality in the stress field
within the radius of about one-half thickness from the tip, and a *2-D-3-D™ transitional
state persisted up to the radial distance of approximately 1.5 times the thickness of plate.
In addition, we have determined that the plane strain | /\ﬁ' stress field dominates within
the radial distance of about 0.5% of the thickness from the tip along the mid-plane of the
plate. Furthermore, the corner singularity field was observed near the intersection of crack
front and the free surface, and its size was inferred from the behavior of local K.

In the present analysis, the sume geometry used in the Mode I analysis (similar to that
used by Levy er al., 1971) is adopted to study the 3-D field neur a through-crack frontina
thin isotropic clastic plate remotely subjected to Mode [T in-planc antisymmetrical loading
conditions. The thin plate assumptions made in the Mode [ analysis are again used for this
analysis, so that the near tip region of a plate can be represented by a circular disk which
contains a crack front at its center. The model has a sufficiently large radial extent relative
to the plate thickness, and its external strip of boundary is subjected to the traction of an
assumed surrounding planc stress Mode [ K-field. Under these conditions, the **3-D effects™
should be confined well within the model, so that the plate thickness is the only characteristic
dimension in the region close to the crack front. Although the remote field is plane stress
Mode I, the asymptotic stress ficld along the crack front is expected to be mixed-mode,
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composed of in-plane Mode II and out-of-plane Mode III. antisymmetrical fields. The out-
of-plane deformation occurs due to Poisson expansion,/contraction of the plate above/below
the crack plane. In order to clarify the mixed-mode K-field very close to the crack front.
we introduce two mixity parameters representing the relative strength of each stress intensity
factor. The purpose of this study is to assess the size of the 3-D field with respect to the
physical scale and to determine characteristic features of the stress field along the crack
front under remote in-plane antisymmetrical loading. Furthermore, we investigate the
distributions of focal J and mixed-mode stress intensity factors. Kj; and Kj;;. and through-
thickness for various Poisson’s ratios. The values of these fracture-characterizing par-
ameters are obtained from finite element results using appropriate forms of conservation
and domain integrals.

Attention is again given to the field near the intersection of the crack front and free
surface. We examine the existence and size of a corner singularity field. Here we refer to
the works of Bazant and Estenssoro (1979) and Benthem (1980), who studied the asymptotic
antisymmetrical singular stress field near the normal intersection/vertex of a crack front
and free surface. Our computed results are compared with the solutions given by Benthem
(1980). who employed a finite difference scheme to analyze the stress field of a quarter-
infinite crack in a half-space. We will also comment on two corner stress intensity factors,
symmetrical and antisymmetrical. which represent the amplitudes of singularity fields near
the intersection. Finally. general limiting values of a mixity parameter giving the ratio of
Ky, to K, at the corner will be discussed.

2. CRACK TIP FIELD UNDER GENERAL LOADING CONDITIONS

2.1. 3-D singular stress field
In an isotropic lincar clastic body containing a crack, the stress ficld very close to the
crack front under general (mixed-mode) loading condition is expressed as

1
a,r.l) = X (K f1,(0) + Ky f1,(0) + K /5 (O], (H
<nr

where r and 0 are the local polar coordinates in a plane which perpendicularly interseets
the crack front at an arbitrary point, and K|, K, and K, are the local stress intensity factors
(at the point) for the opening, sliding and tearing modes, respectively. The functions /7,
and /1] are the Cartesian components of the plane strain asymptotic angular distributions
of stress for Modes [ and 1, respectively, and /1) are the corresponding components of the
asymptotic angular stress distribution for Mode 1. [t is assumed that the asymptotic stress
field (1) exists anywhere along a smooth crack front. An exception may be at a corner point
where the crack front meets a free surface (see Section 3.4).

Based on energy relcase arguments, the relationship between J and the stress intensity
factors is

(1=v%) (1+v)

= K K e K )

E

Here £ is Young's modulus and v is Poisson’s ratio.

In a 2-D mixed-mode analysis, Shih (1974) introduced a mixity parameter which is
uscful in representing the relative strengths of Mode I and Mode 1 fields. Shih defined a
non-dimensional elastic mixity parameter M as
Ki
= ' (3)

M 2 tan-' l
[ =" tan
kll

Fid

A pure Mode I corresponds to M = |, while a pure Mode [l condition is represented by
M=0.
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The concept of a mixity parameter is extended to the 3-D crack under general loading
conditions. Here it is necessary to define two mixity parameters. First we introduce dimen-
sionless parameters x = ./1—v* and f = /1 +v. Then we imagine a coordinate system
made by three orthogonal axes: x2K;. 2K}, and BK);;. These axes have the dimension of
[o-1'"] (o: stress: [: length). Using (2). the length of a vector from the origin to a point in
such a coordinate space (spherical radius) equals \/EJ Thus, values of stress intensity
factors can be conveniently deduced from J and two mixity parameters. The two elastic
mixity parameters may be defined from standard spherical angles representing the directions
of the vector as

2 K
M, = - cos™! PR . 4

V2K + K+ B Ky

A ‘K.,
{, = ;

The first mixity. M,. equals (1 — M), where M is Shih's mixity parameter as given in (3).
The mixity parameters in (4) represent the relative strengths of the three stress intensity
factors. The factor 2/n is added so that under pure Mode I, Il and LIl conditions, the mixity
combinations are (M,. M,) = (0.1), (1, 1) and (+,0), respectively. (Under pure Mode III,
M, is undefined.)

2.2. Three-dimensional J integral and stress intensity factors

The Jintegral is a useful parameter in characterizing crack tip ficlds. In elastic materials,
it is equal to the encrgy relcase rate and relates to the local stress intensity factors through
(2). The local cnergy release rate J can be expressed in terms of near-tip ficlds for three-
dimensional problems as

Jl\wul(.\.) = !15{}, H(s) J:'(,) ("’”k on, 0 ) dr. (5)

Here the superseript “*local™ distinguishes J from a pointwise value along a three-dimensional
crack front, and x is an arc length measuring the parameter representing the location of the
crack tip on the crack front. The strain energy density is W, g,; and u, are the Cartesian
components of stress and displacement, and n, are the components of a unit vector normal
to " and to the crack front tangent vector at s. A path I” where the integral is evaluated
surrounds the crack front at s and lies in the plane perpendicular to crack front, as shown
in Fig. 1(a). The Cartesian components y, (s) are those of a unit vector giving the direction
which is formed by the intersection of the plane normal to the crack front and the plane
tangential to the crack plane at s. The integral (5) defines a local energy release rate along
any curvilincar crack front in 3-D space. In general, an equivalent path-independent integral
doces not exist in 3-D fracture geometries, though the shape of path I' may be arbitrary as
it collapses onto the crack tip.

From a discrete computational point of view, expression (5) is not suitable for eval-
uating values of J'*'(s) since an accurate numerical evaluation of limiting fields along the
crack front is difficult. A number of alternate forms for energy release rate that are better
suited for numerical calculations have been derived. Here the so-called “domain integral
formulation™ (Li et al., 1985 ; Nakamura et al., 1989) is bricfly outlined.

First we consider the total energy release by the body due to virtual extension of a
small crack front scgment between the points (s—¢) and (s+¢) as shown in Fig. 1(b).
Suppose the amount of crack advance is expressed by ¢,(s)u,(s). Then, on integrating (5)
over this segment and using the divergence theorem, the total energy release can be expressed
as

3u aqk 5qk
[""avk ox, a\k] dv, ©

J(s) = J . QW ()T () ds” = j

Vis)

where V(s) is a volume which encloses the crack front segment [see Fig. 1(c)]. The vector
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Fig. 1. {u) Crack tip contour " on the planc locully perpendicular to the crack front where v is the
arc fength: (b) virtual crack advanee within 5 ~¢ and s+« represeated by ¢.{5) 5 (¢) the volume V
which encloses the crack front segment.

field ¢, is a continuous weighting function of position, and it equals the direction and
magnitude of the virtual erack extension for points along the cruck front segment [¢ (s} in
Fig. 1{b}}. The size of the volume can be arbitrurily chosen, as long as it encompusses the
crack front segment and a proper ¢, is used. In deriving Jin (6), the crack faces are assumed
lo be traction free, and the domain free of body forces, thermal strain, ete.

A simple approximation to J" is obtained by assuming that it is nearly constant
within such a crack segment. Then J* can be taken out of the first integral in (6) and
solved as

Jlucul(x) = j(J)/J ‘m(s');lz(.s") d.\". (7)

AR 4

A more detailed and consistent procedure for inferring ' from finite element solutions
is discussed by Nakamura et @/, (1989). The computation of the integral over a domain/
volume is readily compatible with the finite clement formulation, and the domain integral
has proven to be a most effective method to compute J in 3-D problems.

In the present analysis, the near-tip field is expected to be composed of both Mode H
and Mode HI fields. Accurate numerical methods, based on conservation integrals, for
extracting the complex stress intensity factor in a mixed-mode 2-D elastic body have been
given by Stern er al. (1976). Yau ¢r af. (1980) and Shih and Asaro (1988). Here we extend
these formulations to the general three-dimensional case.

We begin by considering an auxiliary (pscudo) ficld that is the solution to a crack
problem under some arbitrary loads. By superimposing the actual ficld (the mixed-mode
boundary value problem) on the auxitiary field. we can introduce a local interaction energy
release rate as
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. ) ™ Cu;
llocai(S) = Ixm uk(s) J;{ , [U:‘;‘e?;“"k "Uij ?;&_nj ___o-;‘l“" ?—n;] dr (8)

=0 X,

Here the variables with the superscript ““aux™ are the solutions of the auxiliary field. The
above integral is a conservation integral as long as the limit (I" — 0) is preserved. Addition-
ally, ' at a point s along the crack front relates to local stress intensity factors of each
field by

I —v? , I+v
T ok 2k + Y

[local(s) = E

2K Kt &)

where K", K" and R} are local stress intensity factors for the auxiliary field at a point
s. Now suppose we choose the auxiliary field such that the values of its stress intensity
factors are Ki** = |, Kii"" = K{ii* = 0 (i.e., a unit plane strain Mode [ K-field). Next, we
calculate the interaction energy (8) from both the actual and auxiliary field solutions. Then
the Mode | component of stress intensity factor, K,. at a point 5 on the crack front can be
deduced from " through (9) as

Ki(s) = 3 14 (s). (10)

(1=v%)

This procedure can be repeated for extracting K, and Ky, by choosing the corresponding
auxiliary ficlds to be the Mode I and IH singular ficld solutions, respectively, and using
(9 after cach 1"(s) is evaluated through (8).

In order to compute the interaction encrgy release rate from the finite clement results
accurately, we follow the domain integral method discussed before. Again we consider the
total interaction energy release due to virtual extension of a small crack front segment as
shown in Fig. 1{b}. With the aids of the weighting function ¢, and the divergence theorem,
this encrgy can be expressed in a domain/volume integral form as

I(s) = J G ()1 () ds

3

_ Qi LAY aux O, v
= Gy 3o Ty e, é”""i;‘"i; o V. (n
(X7} (’"k C .vk .Y,' (,v.\',‘
Here we have used the relution o3%s,; = C, 6207e;; = oyel)™, where Cj are the Cartesian

components of the fourth-order elastic modulus tensor. Aguin, traction-free crack faces,
ete., are assumed. The local interaction energy release rate can be approximated from 7
using a form similar to (7). In this analysis, however, we compute /' and 7" using a
formulation more consistent with the finite element method (see Nakamura ef al., 1989).

3. COMPUTATIONAL ANALYSIS

3.1 Commurational procedure

The near-tip region of an antisymmetrically foaded thin plate of thickness ¢ [Fig. 2(a)]
is modcled by a circular disk (cylinder) shown in Fig. 2(b). The straight crack front is
located at the center of the disk along the x,-axis (x;, xs = 0), The maximum radial extent
of the disk is five times the thickness (r,,,./t = 5), which is large enough to contain three-
dimensional aspects of the ficlds within the outer boundary. (This was verified by obtaining
planc stress Aj-field solutions at r/t = § using a mesh with a much larger radius.) The
external strip of boundary is subjected to the traction of an assumed far-field pure Mode
I1 stress intensity solution.
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Fig. 2. (&) Schematic of a thin plate subjected to in-plane antisymmetrical loads. A boundary of

assumed plane stress Kp-ficld-dominated region is indicated. (b) A cracked circular disk which

represents the near crack front region of a thin plate. Cartestan and cylindrical coordinates are
indicated.

In constructing the finite element mesh, we have used the clastic lincarity and anti-
symmetrical conditions across the crack and ligament planc (x, = 0) to model only the
upper part of the body. Additionally, the problem possesses reflective symmetry with respect
to the mid-planc (x, = 0), so that only a quarter of the circulur disk [region 0 < 0 € =,
0 < x/t < 12, where € = tan ' (x,/x))] needs to be modeled. Zero displacement boundary
conditions in the x, and x, directions arc preseribed on the ligament portion of the x, =0
plane, as well as in the xy dircction on the xy = 0 plane. The finite clement mesh of this
geometry is constructed with 8-node trilincar hexahedron (brick) clements as shown in Fig.
3. In the plane perpendicular to the crack front (v, -x, plane), the clement size is gradually
increased with radial distance r (where r = \/\, +x3) from the crack tip, while the angular
increment of cach element is kept constant, A = n/36, throughout the mesh. The identical
planar mesh is repeated along the xj-axis from the symmetry pline (x; = 0) to the free
surface (x,/¢ = 1/2). To accommodate the strong variations of ficld quantitics with respect
to the x;-axis, the thickness of successive element layers is gradually reduced toward the
free surface.

Fig. 3. Finitc element mesh of the quarter-model. The front plane corresponds to the free surface.
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In carrying out the present analyses, two finite element meshes are employed for each
Poisson’s ratio considered. The first mesh models the entire radius (up to 7 = rp,,), With
the plane stress traction boundary condition applied on the outer perimeter (Fig. 3). The
second mesh has the same thickness and a similar element arrangement, but the radial
extent is a fraction of the first mesh. Within that radius, elements of even smaller radial
extent are contained. This finer mesh is used to obtain more accurate solutions near the
crack front and near the intersection of the crack front and the free surface. In order to
prescribe the boundary condition on the outer perimeter of the finer mesh, the computed
displacements from the coarser mesh are interpolated to the boundary nodal points of the
finer mesh. The first (coarser) mesh has a total of 5400 elements (18 circumferential x 25
radial in-plane ; 12 layers through half-thickness) and 6422 nodes. The second (finer) mesh
has 4860 elements (18 x 18 in-plane; 15 layers through half-thickness) and 5776 nodes. The
radial extent of the outermost nodes of the second mesh is 0.181¢, its crack tip elements
have a radial extent of 0.001¢, and the thickness of the element layer adjoining its free
surface is 0.002¢. The crack front is surrounded by wedge-shaped elements whose inner
nodes are collapsed to share the same coordinate but have independent degrees of freedom.
At each crack front location, the zero boundary conditions in the x, and x, directions are
imposed only on the crack front node which is part of the ligament plane.

The traction boundary condition was applied to the first mesh by computing consistent
nodal forces. The plane stress K-ficld traction, weighted by nodal shape functions, was
integrated over cach element’s surface. The stress distribution on the outer boundary is
given by

e

2nr

max

Here K75 is the assumed far-ficld (remote) Mode [l stress intensity factor and 7] are the
plane stress components of angular distribution of stress.

The material behavior of the plate is taken to be isotropic lincar clastic. In our
computation, Poisson’s ratios of v = 0, 0.15, 0.30, 0.40 and 0.499 were chosen.

All the finte element results were obtained using the finite element code ABAQUS
(1987) ; the calculations were carried out on an Alliant FX-8 computer. To alleviate the
potential numerical difliculties associated with the nearly incompressible solid (v = 0.499),
the B-bar method (Nagtegaal ef al., 1974 ; Hughes, 1980) was implemented in the program
for the formulation of the element stiffness matrices. In the case of the 8-node brick element,
the volumetric components of the strain/displacement B matrix were obtained by 1-point
quadrature, while the deviatoric components were obtained by 2 x 2 x 2 Gaussian quad-
rature. The former integration results in a uniform hydrostatic pressure throughout the
clement. As a safeguard against spurious pressure modes, we employed the modified B-bar
method discussed in Nakamura ef ¢f. (1989). A small weighting factor of 0.0001 was chosen
for our analyses. This method was employed for all the Poisson’s ratios in order to obtain
consistency in the computations.

3.2. Three-dimensional field of thin plate

The deformation field in a thin plate was nearly uniform through-thickness, except in
the region ncar the crack front. The transition to the three-dimensional state occurs within
a radial distance from the crack front of the order of the plate thickness. In order to show
the general features of the 3-D antisymmetrical ficld, the in-plane shearing stress ahead of
crack front (0 = 57) for cach Poisson’s ratio is plotted as a function of radial distance in
Fig. 4(a). The stress is normalized by the corresponding component of the far-field plane
stress solution, eqn (12). In this figure, mid-plane and edge-plane denote the element layer
closest to the mid-planc or symmetry-plane and the element layer adjoining the free surface,
respectively. The stress output is given at the centroid of each element, along x,/t = 0.05
for the mid-plane and x,/t = 0.495 for the edge-plane. The curves in Fig. 4(a) show the
computed stress to be nearly identical with the plane stress value for all Poisson’s ratios at
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Fig. 4. Shear stress ahead of crack front normalized by corresponding component of 2-D plane
stress Ky-field solution; () for various Poisson's ratios at mid-plane and edge-plane; (b) for
v = (.30 at different depths, (Note zero suppression of ordinate axis.)

large r/t. At smaller r/1, the difference between the mid-plane and the edge-plane values
increases. Also, the differences between complete and two-dimensional solutions are greater
at the edge-plane than at the mid-plane, and the results of higher Poisson’s ratios have
larger amplitude of variation through-thickness. In any case, unlike the behavior of opening
stress observed in the Mode I analysis, the shearing stress near the crack front is higher at
the edge-plane than at the mid-plane. The stress at different depths in the plate for v = 0.30
is plotted in Fig. 4(b). Again, it gencrally appcars that the stress increases towards the edge-
plane near the crack front. This feature is more clearly illustrated by the variation of K
through-thickness shown below. These figures show that the small deviation from two-
dimensionality (uniform through-thickness) starts near r/t = 1.5, and that within r/t < 0.5,
the three-dimensionality of the stress field is significant.

In our previous analysis of symmetrical loading of a thin cracked plate, we noted that
certain features of the 2-D plane stress — 3-D transitional ficld could be captured by an
approximate 3-D stress function based on the underlying plane stress solution (Nukamura
and Parks, 1988). The application of that procedure to the present case gives

a¥™ 3 v [(nY 50/ (}( 0. 30
o.;;tit:rcss = l+4 I +v (’;) Cos "i’ COS‘z‘ I —sin 2 sin 2 . (I})

The results shown in Fig. 4 are in good qualitative agreement with (13) in theregionr/t 2 1
e.g. small stress variation at mid-plane, increasing stress with increasing distance from mid-
plane, with larger stress variation at higher Poisson ratio.



Crack froat of thin elastic plate 1419

14 T - . . 7'
L T
L I
—_ | /i
< ]
. 12 /)
N L ,,
T
c [ 7
s 0 S
< I v= 7, o
élo———l___" 22 ]
= =3
i T
_\ _._‘-.-._._._......: -z .,
T b w——-—"
3 ost N ]
= i 30  ——
40 == -
I 499 == ==
os L L N X
00 ot 02 03 o -
X3/t

Fig. 5. Normalized local J along the half-crack front for various Poisson’s ratios. (Note zero
suppression of ordinate axis.)

The size of the three-dimensional field was also investigated from other components
of stress and displacement at various locations, including the out-of-plane displacement,
u,, and the degree of plane strain, :./v(6,,+0;:). Qualitatively, the results of these
variables are ncarly identical to the ones shown in the symmetrical field analysis (Nakamura
and Parks, 1988). They confirm similar characteristics of the near crack front 3-D field—
a gradual change from the far-field plane stress condition occurs near the radial distance
of 1.5¢ from the crack tip, and a significant increase in through-thickness variation of field
quantitics is observed within r/r < 0.5. The size of the 3-D ficld appears to be independent
of Poisson’s ratio (except v = 0).

The J integral along the crack front is obtained using the domain integral method
described in Section 2.2, The values of local J inferred from different domains are gencrally
within 0.5% of the mean value at cach nodal location along the crack front, except for the
free surface position, where the domain dependence is somewhat larger. At cach location,
the mean J value over the domains is denoted as J**'. [dentical distributions of J are
obtained from the initial mesh and the second (finer) mesh, except that more detailed results
ncar the free surfuce are observed from the finer mesh. This justifics the method used to
obtain accurate solutions near the crack front and free surface. The variation of /' along
the crack front is shown in Fig. 5 for different Poisson’s ratios. The local J is normalized
by (K}i")*/E, which is also the value of the average J for the entire crack front. The figure
shows an exactly opposite trend from the familiar Mode I results. The computed J“* in
the antisymmetrical ficld shows the minimum values at the symmetry-plane (x,/t = 0) and
the maximum values on the free surfuce (xy/t = 0.5) for all the non-zero Poisson's ratios.
In fact, J** increases very rapidly toward the free surface. This behavior is consistent with
the corner singularity solution which is discussed in Section 3.4. The result for v =0 is
identical to the 2-D solution with the same Poisson’s ratio. Interestingly, all the curves pass
through (near) a point located at x,/r = 0.36 and J“/[(KF7)*/E] = 1.

Figure 6 shows the variation through-thickness of local stress intensity factors. Each
factor is denoted with superscript “local™ to distinguish from the far-ficld/remote stress
intensity factor. These values are obtained from Tin (11), where the auxiliary field is set to
the I/\/r plane struin Mode II solution for extracting K", and to the I/\/r Mode 111
solution for extracting Kii*. Since our mesh modcls only the upper half of the plate,
antisymmetrical terms in (11) are properly accommodated in computing 7 over the entire
domain V. The Mode I1 stress intensity factor K7, as shown in Fig. 6(a), remains constant
over nearly the entire crack front and increases rapidly ncar the free surface (except that
for v = 0). In Fig. 6(b), the Modc Il stress intensity factor KI5 is shown. Since the out-
of-planc displacement is antisymmetrical across the plane x,/t = 0, K5 is an odd function
of x, and vanishes at xy/t = 0. Again, unlike the K™ seen in the Mode [ analysis, the
(absolute) value of K|ji* increases monotonically for larger x,/t and appears to approach
infinity at the free surface. The local J at nodal points along the crack front are computed
from K} and K5 using relation (2). The values are within 1% of J'* shown in Fig. 5
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Fig. 6. Normalized local stress intensity factor components along the half-crack front for various
Poisson’s ratios | (1) for Mode 1 component (note zero suppression of ordinate axis) ; (b) for Mode
1t component.

{except at the free surface node), further substantiating the accuracy of these parameters
obtained through the domain integrals.

In Fig. 7 we have plotted the local mixity factor M, of (4). Since the field is anti-
symmetrical and K™ =0 (K%' is never zero in the present case), the other mixity
parameter is unity (M, = 1) through-thickness. With this condition, M, depends only on
K and Ki5*; M, = | corresponds to pure Mode Il while M, = 0 corresponds to pure
Mode II1. The curves in Fig. 7 show pure Mode II at the symmetry-plane (x,/t = 0) and
decreasing values of M, towards the free surface for all values of v. Since the Mode 111

il
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Fig. 7. Mixity parameter M, along crack front. In antisymmetrical fields, the other mixity parameter
3, is unity. {Note zero suppression of ordinate axis.)



Crack front of thin elastic plate 1421

- T v T T v ¥

(2) PR AR S A 72 Sub o 8]
— 10 DA---‘..t :: 2 A
< & 2]
- TR 4..A Ao » 1

£ wa g SEwet ]
.. a,
X oolligrae: 3--.-&--0 4--0--.-0-@-0--: d & M
~ 4. %0 v, G
L o -
i [ o L 2 Bl ©..0.0..0]
ﬁ o L L) ;__- “
~F Srette,. 1
'S [ v - 30 ~ o ... ]
b xy/t= 080 KM/KM=1027 0 O
20 /L= 0016 /KM -0021 )
° 4 90 136 180
]

(b) PR R e S V7 S o 8]
— r0f o 8-
N H 8. %a O 1
— & 8 A.d.g., %u ¥

e ~0-r0-9-
[ .am
Q .
N By
3
=2
X
~
& . “w., 1
b X/t = 487 KS7/KS™ - 1112 *-.. 1
-20 b /L= ,00161 K"'M/,K"ml- 0.‘444 X Q_.? o
° 46 %0 136 180

o

Fig. 8. Angular distributions of stress components very near crack front normalized by K3i*; (a) at

X/t = 0,050, where KU KS = 1027 and KiP/KE = 0.021; (b) at x/r = 0.4%7, where Kie!

Kir = 112 and Kyp' Ky = 0.444. In both figures, appropriately weighted corresponding 2-D
angular stress distributions are shown with dashed lines for compartson.

contribution is due to the Poisson’s effect of the material, the relative strength of Kl is
greater for lurger values of v.

3.3. Near-tip asymptotic condition

If the normal out-of-planc strain component, &;3, is bounded or less singular than 1/
\ﬂ along the crack front, then a pointwise two-dimensional condition should emerge as the
crack front is approached. Thus, asymptotically, a l/\/r singular stress solution (1) will
prevail near the crack front. The behavior of this strain component is very similar to that
obtained in the previous Mode [ analysis. For very small r/t the relative value of ¢, (as
compared to a norm of in-plane strain components) approaches zero in almost identical
manner for all the non-zero Poisson’s ratios.

The complete stress field very near the crack tip (/¢ = 0.0015) is shown in Fig. 8. The
components of computed stress are normalized by Kfi* and are plotted over the angular
range 0 < 6 < « for v = 0.30. The angular distributions f}} and f}}' of (1) are shown with
dashed lines. Since the ficld is a mixture of Modes I and 111, these functions are weighted
by respective local stress intensity factors obtained earlier from the domain integrals. For
each stress component, Fig. 8(a) shows good agreement between the computed stress and
the 2-D solution at the mid-plane. x,/t = 0.050. The values of Ki** and K3 at this crack
front location are indicated in the figure. In Fig. 8(b), the same variables are similarly
plotted near the free surface, x;/t = 0.487, where there is a much greater Mode I1I influence.
These results confirm the assertion that the asymptotic stress field along a crack front is
indeed characterized by singular K-field solutions as in (1).

The agreement with the local K-field solution deteriorates as the radial distance from
the crack front increases. The deterioration is most evident in the decay of ¢,, from the
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plane strain constraint. Based on comparisons of the complete and asymptotic solutions,
we conclude that K-fields (mixed-mode) exist along the 3-D crack front within the radius
of approximately 0.005¢ for a thin plate under general loading conditions, similar to that
found in the Mode I analysis.

3.4. Corner singularity field

At a point sufficiently close to the normal intersection of crack front and free surface,
the asymptotic deformation field should be characterized by the corner singularity field of
a quarter-infinite crack plane in a half-space. According to Benthem (1977). the stress in
the corner singularity field may be expressed in a separable form as

Gy plgij(g'l ®). (14)

where 4 is the coefficient of stress singularity, g,; is a dimensionless angular function
depending on the Poisson’s ratio. and spherical coordinates centered at the vertex are

p=\/r_:—:s. d>=tan_'<;)- :=é—-\'3- (15)

This asymptotic form was also shown by Bazant and Estenssoro (1979). In a previous
analysis of the symmetrical corner field, Nakamura and Parks (1988) introduced the corner
stress intensity factor, 4, as a scaling constant in eqn (14). Furthermore, its relationship
with the locul stress intensity factor near the intersection was shown to be

Klnc;nl(:) - w:1+ 12 for =—0. (l())
Here 4 has the dimension [o+/ *] (o: stress; [: length dimensions). Using a similar idea,
the stress ficld under more general loading conditions can be given in terms of a complex
corner stress intensity factor. For mixed-mode ficlds, the stress near the intersection may

be expressed in terms of dominant symmetrical and antisymmetrical corner singularities as

1

0.,(p.0,¢) = [2sp* g5, (0, D)+ Bap* g} (0. D)]. (17)

2rn

Here 4, [same as 4 in (16)] and 4, are the corner stress intensity factors corresponding
to the symmetrical and antisymmetrical fields, respectively. Also, A is the eigenvalue for
symmetrical ficlds, and 4, is the eigenvalue for antisymmetrical fields. The leading roots
range over —0.5 < Ag < —0.332 and —0.52 1, 2 —0.646 for 0 < v < 0.5, respectively
(Benthem, 1977, 1980 ; Bazant and Estenssoro, 1979). The dimensionless angular functions
g, and g/} also depend on v. For v # 0, these values of A suggest that the second term in
(17) dominates as p — 0 under any mixed-mode conditions, and in general, the asymptotic
field is pure antisymmetrical at the interscction. On the free surface (¢ = 90°), p = r, and
the stress singularity (in r) is more severe than the l/\/; singularity observed within the
interior of plate, except when the local stress ficld is exactly symmetrical.

A complete relationship between the stress intensity factors and the corner stress
intensity factors can be expressed in a fashion similar to (16) as

Kllucal(:) = wszls+ 12

Kt (2) = #2201V for 2 0.

Kt (2) = R(v)Br* Y2, (18)
Here R(v) is a dimensionless factor equivalent to the ratio of Kifi to Kii*™, and it is a

function of only Poisson’s ratio. Equations (18) suggest that the local stress intensity factor
tends to zcro in a symmetrical field and tends to infinity in an antisymmetrical field for
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Fig. 9. Normalized J*** for various Poisson’s ratios plotted against normalized distance from the
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crack front. Benthem's singularity exponents are shown in the inset. Also, slopes of straight lines

correspond to the corner singularity field solutions, (a) For antisymmetrical ficlds under far-ficld
Moade I (b) For symmetrical fields under fur-fickd Mode L

small = and v # 0 (see Fig. 6). From (1), (17) and (18), we can also determine the relation-
ships between angular functions f; and g;, to be

Sy = lim J/bgh0.9)  [50)+ROSHO) = lim /g0, ). (19)

Here f1,(0). /11(0) and f11(0) arc the planc strain Mode I and I and anti-plane Mode 111
angular distribution of stress given in (1), and, unlike the functions g,,, they are independent
of v.

In order to determine the dominance of such corner singularity field in a finite thickness
plate, J** was plotted on a log-log scale in Fig. 9(a). The computed value of J'**! was
employed since it is expected to be more accurate than KY! or K near the free surface.
If (18) holds true near the free surface of the thin plate, J*** should be proportional to
z¥* 1 for small = [from (2)]. The small circles in the figure indicate J'°* at the mid-locations
of element fayers along the crack front, and the tangent of each curve corresponds to the
exponent of =, Also plotted in the figure are the straight lines whose slopes are 2(i, +1/2)
for the respective Poisson’s ratios. The values of 44 given by Benthem are depicted in the
inset. The curves are nearly straight for 2/t < 0.03, and the agreement with Benthem's
solutions is very good for all the Poisson’s ratios. A similar figure is shown in Fig. 9(b)
from results of the Mode 1 analysis (Nakamura and Parks, 1988) for reference. Based on
the behaviors of J near a corner as shown in Fig. 9, we tentatively conclude that the corner
singularity ficld in a thin plate dominates within the spherical radius of p/t ~ 0.03 from the
intersection for all the (non-zero) Poisson’s ratios and both symmetrical and anti-
symmctrical ficlds.

From the computed values of local stress intensity factor very near the intersection
(z/t < 0.03), we can determine the amplitude of corner stress intensity factor for a thin plate
using (18). The factor #,. normalized with Kfi" and ¢*2+ ' is plotted as a function of v in

SAS 7§:42-€
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Fig. 10, (4} Components of corner stress intensity factor, #,, for a thin plane under far-ficld in-

plane antisymmetrical load, normatized with K5 and shown as a function of Poisson's ratio, v.

Also A, from Nukamura and Parks (1988) is shown for reference. (b) The ratio of K35 to Kjp,
R(v), determined from M, in Fig. 7 for x,/t - 12,

Fig. 10{a). These solutions are universal in the sense that if a plate satisfies the rhin plate
requirements, they are independent of any in-plane dimensions of the plate. For reference,
we have included A, normalized with K7 and ¢%* "2, from the previous analysis, the thin
plate under in-plane symmetrical load (far-field Mode I), in the same figure.

As stated by Benthem (1980), Modes I and I cannot occur independently at the
intersection, and the ratio of K% to K¢ is fixed for a given Poisson’s ratio. [Bazant and
Estenssoro (1979) cite a privatc communication from L. M. Keer as also reaching this
conclusion.] For the case of non-normal intersection, the limiting ratio also depends on the
crack edge angle and crack plane angle, as indicated in BaZant and Estenssoro (1979). The
function R(v) may be obtained from the computed local stress intensity factors near the
free surface. In terms of the mixity parameter given in (4), it is

R(v)-—»,/l—v/tan [gMn(z;v)] as z-0. (20)

Based on the limiting values of M, at x;/¢t = 0.5 shown in Fig. 7, R(v) are determined and
plotted in Fig. 10(b). (The sign of R is arbitrary as it depends on the choice of coordinate’s
direction.) The value given by Benthem (1980). from his stress intensity factors, is
R(v) = 0.50 for v = 0.30, which is in good agreement with that found here. We emphasize
that the relative strength of the Mode II and III stress intensity factors near the corner,
while depending on v, is independent of loading conditions. We have also applied other
antisymmetrical loading boundary conditions to crack meshes of this sort. While the
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resulting local fields were quite different in nature, the ratio R or the local mixity parameter
M, near the corner was always in good agreement with the result shown in Fig. 10(b),
further substantiating the generality of the result.

4. DISCUSSION

The results of a thin plate under remote Mode II loading show strong 3-D effects up
to a radial distance of approximately half the plate thickness from the crack front and
weaker through-thickness variations of stress field within 0.5 < r/t < 1.5. These values are
consistent with the results found in the analysis of a thin plate under Mode I loading.

We have also shown that the asymptotic stress field along the crack front is indeed
characterized by the K-field (mixed-mode) solutions, and the corresponding stress intensity
factors can be successfully computed from finite element results using the conservation and
domain integrals. The domain of such near crack front K-field extends approximately 0.5%
of the thickness in the radial direction at the mid-plane. The extracted values of stress
intensity factor indicate the magnitude of the | /\/; singular field to be greater towards the
free surface. a trend completely opposite to the Mode I results. This result may imply that,
under antisymmetrical or any mixed-mode loading conditions, first fracture initiation occurs
at the edge of the crack front (corner point) instead of at a interior location of the plate.

Near the intersection of the crack front and free surface, the computed field approaches
the asymptotic antisymmetrical solutions given by Benthem (1980) and BaZzant and
Estenssoro (1979). The corner stress ficld under general loading conditions is expressed in
terms of symmetrical and antisymmetrical corner stress intensity factors. It appears that
the corner singularity ficld dominates up to the radial distance of 3% of the thickness of a
thin plate under any type of loading condition.

At the exact corner point, the standard intensity factors of fracture mechanics losc
their meaning, since a | /\/ r singular ficld generally does not exist. However, the limiting
value of the ratio of KI5 to K& does exist, and it varies depending on v and on the angles
of crack edge and crack plane, as discussed in BaZant and Estenssoro (1979). It is possible
to find a crack intersection (cdge) angle for a given crack plane angle and Poisson’s ratio
to have a finite energy releasce rate and invariant stress intensity factor for small = (Bazant
and Estenssoro, 1979). For the present geometry of perpendicular intersecting angle and
zero inclined crack plane angle, such a condition occurs when Poisson’s ratio is zero.

As long as the antisymmetrical corner stress intensity factor is not zero (4, # 0), the
second term dominates in (17), and higher limiting stresses prevail at the corner. This
suggests that, if an existing crack front is nearly straight, crack initiation under mixed-mode
loading would tend to begin near the intersection of crack front and free surface. Such
phenomena were indeed observed in a recent experimental study by Aoki er al. (1989), who
noted shear crack emanations from the edges under various far-field mixed-mode (I and
1) conditions.

In homogeneous plates subject to mode II loading, extended cracking in the initial
plane is not expected, as generally the crack will kink out of its prior planc. One case where
in-plane “cracking” docs occur is the propagation of the slipping/locked boundary along
strike-slip faults. Our analysis of a through-crack making an orthogonal intersection with
the free surface resulted in extremely large stress intensities near the surface. It is thus
natural to assume that, at the surface, an actual slipping boundary would extend further
into the locked portion than it would at mid-plate depth, resulting in an unfamiliar (as
compared to advancing mode [ crack fronts) convex shape. Indecd, Rice (1988) has noted
that this interpretation of our results is consistent with seismic and geodetic data at the
boundaries (near Parkfield and San Juan Batista, California) of a slipping portion of the
San Andreas.
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