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Abstrlct-Iktsed on detailed three-dimensiomtlfinite element analysis. the near-tip field of;t thin
elastic plate remotely subj\.'Ct\.-d to Mode II antisymmetrical loading is investigated. The computed
results show the tmnsition to a thrcc-dimensiomtl state to O\.'Cur near the radial distance from the
crack tip Ilf 1.5 times the rlate thickness. In the close vicinity of the cr;tck front. the asymptotic
stress field is characterized by a C\1mbination of rlane strain Mode II and anti-plane Mllde III
singular ( 17 fil lields. The domain Ill' such fields ell tends approllimately 0.5% of Ihe thickness in
the mdial directilln. The milled-nwde stress intensity f;lctors ;tlung the crack front arc determined
from 3-0 conserv,ltion inh:grals. ,lOd unlike the c;tse of symmctricalloading. their m,tgnitudes are
greater towards Ihe ff\.'C surl;I\.'C. Near the interS\.'Ction of the crack front and fn:e surface. the stn:ss
licld cllllverges to the antisylllmetrical corner singularity solulion. The asymptotic form of str\.-ss
ncar the inters\.'Ction under gt'neral loading conditions is pn:sented. ;llong with the corner strt'ss
intensity factors.

I. INTRODUCTION

In a Ihin plate containing u through-crack. u nearly plune stress condition exists everywhere.
except in regions neur the cruck front. where the state of stress is three-dimensional. In a
previous study (Nakamunl and Purks. 1988). we considered the near crack front region of
a thin pl.tte remotely subjected to Mode I in-plane symmetrical loading conditions. A thin
plate is defined as a cracked plate which contuins an annular region. outside the near crack
front 3-0 field. where deformation is essentially characterized by a plane stress K-field
solution. Under such conditions. the near crack front lield is independent of any ill-plane
dimensions. and the magnitude of loading can be conveniently given by the remote stress
intensityfaclor. The Mode I analysis revealed strong three-dimensionality in the stress field
within the radius of about one-hull' thickness from the tip. and a "2-0-3-D" transitional
state persisted up to the radial distance of approximately 1.5 times the thickness of plate.
In addition. we have determined that the plane stmin 1/';;' stress field dominates within
Ihe r.ldial distance of about 0.5% of the thickness from the tip along the mid-plane of the
plate. Furthermore. the corner singuhtrity field was observed neur the intersection of crack
front and the free surface. and its size was inferred from the behavior of local K.

In the present analysis. the same geometry used in the Mode I analysis (similar to that
used by Levy el al.• 1971) is adopted to study the 3-0 field near a through-crack front in a
thin isotropic clastic plate remotely subjected to Mode II in-plane antisymmetricalloading
conditions. The thin plate assumptions mnde in the Mode I analysis arc again used for this
analysis. so that the near tip region of a plate can be represented by a circular disk which
cont:'lins u crack front at its center. The model has a sufficiently large radial extent relative
to the plate thickness. and its external strip of boundary is subjected to the traction of an
assumed surrounding plane stress Mode II K-field. Under these conditions. the "3-D effects"
should be conflned well within the model. so that the plate thickness is the only characteristic
dimension in the region close to the crack front. Although the remote field is plane stress
Mode II, the asymptotic stress field along the crack front is ex.pected to be mix.ed-mode,
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composed of in-plane Mode II and out-of-plane Mode Ill. antisymmetrical fields. The out­
of-plane defonnation occurs due to Poisson expansion/contraction of the plate above/below
the crack plane. In order to clarify the mixed-mode K-field very close to the crack front.
we introduce two mixity parameters representing the relative strength ofeach stress intensity
factor. The purpose of this study is to assess the size of the 3-D field with respect to the
physical scale and to detennine characteristic features of the stress field along the crack
front under remote in-plane antisymmetrical loading. Furthennore. we investigate the
distributions of local J and mixed-mode stress intensity factors. KII and Kill' and through­
thickness for various Poisson's ratios. The values of these fracture-characterizing par­
ameters are obtained from finite element results using appropriate fonns of conservation
and domain integrals.

Attention is again given to the field near the intersection of the crack front and free
surface. We examine the existence and size of a corner singularity field. Here we refer to
the works of Bazant and Estenssoro (1979) and Benthem (1980). who studied the asymptotic
antisymmetrical singular stress field near the normal intersection/vertex of a crack front
and free surface. Our computed results are compared with the solutions given by Benthem
(1980). who employed a finite difference scheme to analyze the stress field of a quarter­
infinite crack in a half-space. We will also comment on two corner stress intensity factors.
symmetrical and antisymmetrical. which represent the amplitudes of singularity fields ncar
the intersection. Finally. general limiting values of a mixity parameter giving the ratio of
Kill to KII at the corner will be discussed.

1. CRACK Til' fiELD UNOER GENERAL LOADING CONDITIONS

2.1. 3-D sill.t}lIlar s[ress field
In an isotropic linear elastic body containing a crack. the stress field very close to the

crack front under general (mixed-mode) loading wndition is expressed as

( I )

where r ~lOd () arc the local polar coordinates in a plane which perpendicularly intersects
the crack front at an arbitrary point. and K(. Kif and Kill arc the local stress intensity factors
(at the point) for the opening. sliding and tearing modes. respectively. The functions /:1
and I:: arc the Cartesian components of the plal/e strai" asymptotic angular distributions
of stress for Modes I and II. respectively. and /::1 are the corresponding components of the
asymptotic angular stress distribution for Mode III. It is assumed that the asymptotic stress
field (I) exists anywhere along a smooth crack front. An exception may be at a corner point
where the crack front meets a free surface (sec Section 3.4).

Based on energy release arguments. the relationship between J and the stress intensity
factors is

(2)

Here £ is Young's modulus and v is Poisson's ratio.
In a 2-D mixed-mode analysis, Shih (1974) introduced a mixity parameter which is

useful in representing the relative strengths of Mode I and Mode (I fields. Shih defined a
non-dimensional elastic mixity parameter Mas

M = ~ tan-I I·~II.
1t KII

(3)

A pure Mode I corresponds to I\,-I = I. while a pure Mode II condition is represented by
M=O.
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The concept of a mixity parameter is extended to the 3-D crack under general loading
conditions. Here it is necjry to define two mixity parameters. First we introduce dimen­
sionless parameters % = l-v2 and fJ = jt+;. Then we imagine a coordinate system
made by three orthogonal axes: %K(. %KII and fJKm . These axes have the dimension of
[0' ·fI2] (0': stress: f: length). Using (2). the length of a vector from the origin to a point in

r--
such a coordinate space (spherical radius) equals .J£J. Thus. values of stress intensity
factors can be conveniently deduced from J and two mixity parameters. The two elastic
mixity parameters may be defined from standard spherical angles representing the directions
of the vector as

2 IAfo = - cos-
7t J~'''''' "%-Ki +!t- Kj( +p- Kill

(4)

The first mixity. M.p. equals (I-M). where Mis Shih's mixity parameter as given in (3).
The mildty parameters in (4) represent the relative strengths of the three stress intensity
factors. The factor 2(7t is added so that under pure Mode I. II and III conditions. the mixity
combinations are (M,p.Mo) = (0.1). (1.1) and (•. 0). respectively. (Under pure Mode III.
M.p is undefined.)

2.2. Three-dimensionaf J integraf anef :~tress intensity factors
The J integral is a useful parameter in characterizing crack tip fields. In elastic materials,

it is equal to the energy releasc ratc and relatcs to the local stress intensity factors through
(2). The local energy release rate J can be expressed in terms of ncar-tip fields for thrce­
dimensional problems as

(5)

Here the superscript "local" distinguishes J from a pointwise value along a three-dimensional
crack front. and .f is an arc length measuring the parameter representing the location of the
crack tip on the crack front. The strain cnergy density is W, (1;j and tI, are the Cartesian
components of stress and displacement, and n, are the components of a unit vector normal
to r and to thc crack front tangent vector at s. A path r where the integral is evaluated
surrounds the crack front at s and lies in the plane perpendicular to crack front, as shown
in Fig. I (a). The Cartesian components Ilk(S) are those of a unit vector giving the direction
which is formed by the intersection of the plane normal to the crack front and the plane
tangential to the crack plane at s. The integral (5) defines a local energy release rate along
any curvilinear crack front in 3-D space. In general, an equivalent path-independent integral
does not exist in 3-D fracture geometries. though the shape of path r may be arbitrary as
it collapses onto the crack tip.

From a discrete computational point of view. expression (5) is not suitable for eval­
uating values of J1<l"al(s) since an accurate numerical evaluation of limiting fields along the
crack front is ditlicult. A number of alternate forms for energy release rate that are better
suited for numerical calculations have been derived. Here the so-called "domain integral
formulation" (Li et af.• 1985; Nakamura et af.• 1989) is briefly outlined.

First we consider the total energy release by the body due to virtual extension of a
small crack front segment between the points (s-£) and (S+E) as shown in Fig. I(b).
Suppose the amount of crack advance is expressed by q/(s)Il/(s). Then, on integrating (5)
over this segment and using the divergence theorem. the total energy release can be expressed
as

(6)

where V(s) is a volume which encloses the crack front segment [see Fig. I(e)l. The vector
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crack front
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(c)

Fig, L (:I) ('mck tip contour r on the plane locally pcrpcmJicular to the crack front where s is the
an: length; (b) virtu:tl crack auv;tl\ce within S-l: :tnU s+r. rcprescnt\.'1.1 by q,(s); (cj the volume V

which encluses the cmck front segment.

field tft is a continuous weighting function of position. and it equ'lls the direction .nlll
magnitude of the virtual cr.lck extension for points along the cmck front scgment [l/t(s) in
Fig. I(b)]. The size of the volume can be arbitmrily chosen. as long as it encompusses the
crack front segment and a proper qt is used. In deriving Jin (6). the cf<lck f<lces <In: assumed
to be traction free. und the dom<lin free of body forces. therm<ll stmin. etc.

A simple approximation to J1o'''11 is obtained by assuming that it is nearly constant
within such a cnlck segment. Then Jlocal can be taken out of the first integral in (6) and
solved as

(7)

A more dct<liled .md consistent procedure for inferring 1 1
''''''1 from finite element solutions

is discussed by Nakamura et (II. (1989). The computation of the integntl over a dom<lin!
volume is readily compatible with the finite clement formulation. und the domain integral
has proven to be a most effective method to compute 1 in 3-D problems.

In the present analysis. the ncar-tip field is expected to be composed of both Mode H
and Mode HI fields. Accurate numerical methods. based on conscrv'ltion integrals. for
extracting the complex stress intensity factor in a mixed-mode 2-D elastic body have been
given by Stern et (11. (1976), Yau et al. (1980) and Shih and Asaro (1988). Here we extend
these formulations to the general three-dimensionnl case.

We begin by considering an auxiliary (pseudo) field that is the solution to a crack
problem under some arbitrary Imlds. By superimposing the actual field (the mixed-mode
boundary value problem) on the nuxiliary field. we can introduce a local interaction energy
release rate as
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(8)

Here the variables with the superscript "aux" are the solutions of the auxiliary field. The
above integral is a conservation integral as long as the limit (r - 0) is preserved. Addition­
ally. l'c",al at a point s along the crack front relates to local stress intensity factors of each
field by

(9)

where K\lU'. Klr' and Kilt are local stress intensity factors for the auxiliary field at a point
J. Now suppose we choose the auxiliary field such that the values of its stress intensity
factors are Kt"' = I. K\'r' = Kmx = 0 (i.e.. a unit plane strain Mode I K-field). Next. we
c'llculate the interaction energy (8) from both the actual and auxiliary field solutions. Then
the Mode I component of stress intensity factor. K1• at 'I point s on the crack front cun be
deduced from 1',>cdI through (9) us

( 10)

This procedure can be repcuted for extracting KII and Kill by choosing the corresponding
auxiliary fields to be the Mode Hand III singul'lr field solutions. respt.'Ctively••md using
(9) after each /""""(J) is evaluated through (8).

In order to compute the interaction energy releuse rate from the finite clement results
accurately. we follow the domain integral method discussed before. Ag'lin we consider the
total interaction energy releuse due to virtual extension of a small crack front segment as
shown in Fig. I(h). With the aids of the weighting function q/c and the divergence theorem.
this energy can he expressed in a domuin/volume integral form us

(I I)

Here we have used the relation u1te'i = C'Jkl/:~tF.;i = Uklt:~t" where C;jkl are the Cartesian
components of the fourth-order clastic modulus tensor. Again. traction-free cruck faces.
etc.• arc assumed. The local interaction energy release rate can be approximated from I
using a form similar to (7). In this analysis. however. we compute j'""al and /I,,,,a' using a
formulation more consistent with the finite element method (sec Nakamura el til.• 1989).

3. COMPUTATIONAL ANALYSIS

3.1. Comp/lfClriwwl proc(ld/lre
The ncar-tip region of an antisymmetrically loaded thin plate of thickness I [Fig. 2(a)]

is modeled hy a circular disk (cylinder) shown in Fig. 2(b). The straight crack front is
located at the center of the disk along the x)-axis (XI.X2 =0). The maximum radial extent
of the disk is five times the thickness (rmax/I = 5). which is large enough to cont.lin three­
dimension'll .ISpccts of the fields within the outer boundary. (This was verified by obtaining
pl.me stress Kwlield solutions at r!f = 5 using a mesh with a much larger radius.) The
extcrn.l1 strip of boundary is subjected to the traction of an assumed far-field pure Mode
II stress intensity solution.
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Fig. :!. (a) Schematic of a thin plate sulljected to in-plane antisymmetrical loads. A boundary of
assumed plane stress K... ticld-dominated region is indicated. (Ill A cracked circular disk which
represents the ne'lr crack front region of a thin plate. Cartesian ami cylindrical coordinales arc

indicated.

In constructing the linite clement mesh, we have used the clastic linearity and anti­
symmetrical conditions across the crack and ligament phme (x~ = 0) to model only the
upper part of the body. Additionally, the problem possesses rel1ective symmetry with respect
to the mid-plane (x \ = 0), so that only a quarter of the circular disk [region 0 :;;; () :;;; 7t,
0:;;; x,/t:;;; 1/2, where 0 = tan I (x~/x,)l needs to be modeled. Zero displ'leement boundary
conditions in the XI and x, direClions are prescribed on the ligament portion of the x~ = 0
plane, as well as in the x I direclion on lhe x, = 0 plane. The tinite clement mesh of this
geometry is constructed with S-node trilinear hexahedron (brick) clements as shown in Fig.
3. In the plane perpendicular to the crack front (Xl'X~ plane), the clement size is gradually
increased with radial distance r (where r = Jxf +.d) from the crack tip, while the angular
increment of each element is kept constant, dO = 7t/36, throughout the mesh. The identical
planar mesh is repeated along the x.,-axis from the symmetry plane (XI = 0) to the free
surl:lce (xJ/t = 1/2). To accommodate the strong variations offield quantities wilh respect
to the xJ-axis, the thickness of successive element layers is gradually reduced toward the
free surface.

Fig. 3. Finite clement mesh of the quarter-model. The front plane corresponds to the free surface.
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In carrying out the vresent analyses. two finite element meshes are employed for each
Poisson's ratio considered. The first mesh' models the entire radius (up to r = rmax). with
the plane stress traction boundary condition applied on the outer perimeter (Fig. 3). The
second mesh has the same thickness and a similar element arrangement. but the radial
extent is a fraction of the first mesh. Within that radius. elements of even smaller radial
extent are contained. This finer mesh is used to obtain more accurate solutions near the
crack front and near the intersection of the crack front and the free surface. In order to
prescribe the boundary condition on the outer perimeter of the finer mesh. the computed
displacements from the coarser mesh are interpolated to the boundary nodal points of the
finer mesh. The first (coarser) mesh has a total of 5400 elements (18 circumferential x ~s

radial in-plane; 12 layers through half-thickness) and 64~~ nodes. The second (finer) mesh
has 4860 elements (18 x 18 in-plane; 15 layers through half-thickness) and 5176 nodes. The
radial extent of the outermost nodes of the second mesh is 0.181 t. its crack tip elements
have a radial extent of 0.001 t. and the thickness of the element layer adjoining its free
surface is O.OO~t. The crack front is surrounded by wedge-shaped elements whose inner
nodes are collapsed to share the same coordinate but have independent degrees of freedom.
At each crack front location, the zero boundary conditions in the x. and XJ directions are
imposed only on the crack front node which is part of the ligament plane.

The tr.lction boundary condition was applied to the first mesh by computing consistent
nodal forces. The plane stress KII-ficld traction. weighted by nodal shape functions. was
integrated over each clement's surface. The stress distribution on the outer boundary is
given by

Kf,or
II }'II(O

Uli = r:,'-= Ij ).

V 21trm".

(I ~)

Here K[I' is the assumed far-field (remote) Mode II stress intensity factor and f:~ are the
plane stress components of angular distribution of stress.

The material behavior of the plate is taken to be isotropic linear clastic. In our
computation, Poisson's ratios of v = 0,0.15,0.30,0.40 and 0.499 were chosen.

All the finte clement results were obtained using the finite clement code ABAQUS
(19~7); the c'llculations were carried out on an Alliant FX-8 computer. To alleviate the
potential numerical dilliculties associated with the nearly incompressible solid (v = 0.499),
the B-bar method (Nagtegaal et al., 1974; Hughes, 1980) was implemented in the program
for the formulation of the clement stiffness matrices. In the case of the 8-node brick clement.
the volumetric components of the strain/displacement B matrix were obt'lined by I-point
quadrature, while the deviatoric components were obtained by 2 x 2 x 2 Gaussian quad­
rature. The former integration results in a uniform hydrostatic pressure throughout the
clement. As a safeguard against spurious pressure modes, we employed the modified 8-bar
method discussed in Nakamura et al. (1989). A small weighting factor 01"0.000 I was chosen
for our analyses. This method was employed for all the Poisson's ratios in order to obtain
consistency in the computations.

3.2. TI""e-e1imensional fielel of thill plate
The deformation field in a thin plate was nearly uniform through-thickness, except in

the region near the crack front. The transition to the three-dimensional state occurs within
a radial distance from the crack front of the order of the plate thickness. In order to show
the general features of the 3-D antisymmetrical field. the in-plane shearing stress ahead of
crack front (0 = 5") for each Poisson's ratio is plotted as a function of radial distance in
Fig. 4(a). The stress is normalized by the corresponding component of the far-field plane
stress solution. eqn (12). In this figure. mid-plane and ec~qe-planedenote the element layer
closest to the mid-plane or symmetry-plane and the element layer adjoining the free surface,
rcspectively. The stress output is given at the centroid of each element. along xJ/t = 0.05
for the mid-plane and xJ/t = 0.495 for the edge-plane. The curves in Fig. 4(a) show the
computed stress to be nearly identical with the plane stress value for all Poisson's ratios at
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Fig. 4. Shcar sln."S.~ ahc'ld of crack front normalizcd by corresponding component of 2-D plane
slrl.'Ss KII-/ield solution; (a) for various Poisson's ratios at mid-plane and cdge-phme; (b) for

I' '" O.Jtl at dilli:rent deplhs. (Nole lcro suppression of ordinale axis.)

large rlt. At sm.lller rlt. the difference between the mid-plane and the edge-plane vulues
increases. Also. the differences between complete and two-dimensional solutions are greater
at the edge-plane than at the mid-plane. and the results of higher Poisson's ratios have
larger amplitude of variation through-thickness. In any case. unlike the behavior ofopening
stress observed in the Mode I analysis. the shearing stress near the crack front is higher at
the edge-plane than at the mid-plane. The stress ut different depths in the plute for v = 0.30
is plotted in Fig. 4(b). Aguin. it generully appears that the stress incre.tses towards the edge­
plune neur the cruck front. This feuture is more clearly illustrated by the variution of KII

through-thickness shown below. These figures show that the small deviation from two­
dimensionality (uniform through-thickness) starts near rlt = 1.5. and that within rlt < 0.5.
the three-dimensionality of the stress field is significant.

In our previous .l",llysis of symmetricullouding of a thin cracked plnte. we noted thnt
certain features of the 2-D plane stress .... 3-D transitionul field could be captured by an
approxim.lle 3-D stress function based on the underlying plane stress solution (N'lkamura
nnd Parks. 1988). The applic'ltion of that procedure to the present cuse gives

(13)

The results shown in Fig. 4 are in good qualitative agreement with (13) in the region rlt ~ I ;
e.g. small stress variation at mid-plane. increasing stress with increasing distance from mid­
plane. with larger stress vuriation at higher Poisson ratio.
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Fig. 5. Nonnalized local J along the half-crack front for various Poisson's ratios. (Note zero
suppression of ordinate a.\is.)

The size of the three-dimensional field was also investigated from other components
of stress and displacement at various locations. including the out-of-plane displacement.
11... and the degree of plane strain. UJ.\/v(r111 +(22)' Qualitatively, the results of these
variables are nearly identical to the ones shown in the symmetrical field analysis (Nakamura
and Parks, 1988). They confirm similar characteristics of the ncar crack front 3-D field­
a gradual change from the far-field plane stress condition occurs ncar the radial distance
of 1.51 from the crack tip, and a significant increase in through-thickness variation of field
quantities is observed within ,/t < 0.5. The size of the 3-D field appears to be independent
of Poisson's ratio (except v = 0).

The J integral .lIong the crack front is obtained using the domain integral method
described in Section 2.2. The values of local J inferred from different domains arc generally
within 0.5% of the mean value at each nodal location along the crack front, except for the
free surf~lce position, where the domain dependence is somewhat larger. At each location,
the mean J value over the domains is denoted as JllX.l. Identical distributions of J are
obtained from the initial mesh and the second (finer) mesh, except that more detailed results
ncar the free surface arc observed from the finer mesh. This justifies the method used to
obtain accurate solutions ncar the crack front and free surface. The variation of J 1lX.' along
the craek front is shown in Fig. 5 for different Poisson's ratios. The local J is normalized
by (K:n 2/E, which is also the value of the average J for the entire crack fronL The figure
shows an exactly opposite trend from the f~tmiliar Mode I results. The computed }"",,,I in
the antisymmetricallield shows the minimum values at the symmetry-plane (Xl/I = 0) and
the maximum values on the free surface (x}/t = 0.5) for all the non-zero Poisson's ratios.
In fact, f"'a' increases very rapidly toward the free surface. This behavior is consistent with
the corner singularity solution which is discussed in Section 3.4. The result for v = 0 is
identical to the 2-D solution with the same Poisson's ratio. Interestingly, all the curves pass
through (near) a point IOl:ated at x,/t = 0.36 and J 1"cal/[(K:i',)2/Ej = I.

Figure 6 shows the variation through-thickness of local stress intensity factors. Each
factor is denoted with superscript "local" to distinguish from the far-field/remote stress
intensity factor. These values are obtained from lin (11), where the auxiliary field is set to
the I/J, plane strain Mode II solution for extracting Kli"'·', and to the 1/'/, Mode III
solution for extracting Klii'. Since our mesh models only the upper half of the plate,
antisymmetrical terms in (11) are properly accommodated in computing lover the entire
domain V. The Mode II stress intensity factor Kl'j'·', as shown in Fig. 6(a), remains constant
over nearly the entire crack front and increases rapidly ncar the free surface (except that
for ,. = 0). In Fig. 6(b). the Mode III stress intensity factor Kl'j(" is shown. Since the out­
of-phllle displacement is antisymmetrical across the plane Xl/I = 0, K\'j(·1 is an odd function
of x, and v'lIlishes at X.I/I = O. Again, unlike the KI~" seen in the Mode I analysis, the
(absolute) value of Kl',~·' increases monotonically for larger Xl/I and appears to approach
infinity at the free surface. The local J at nodal points along the crack front are computed
from K:';"" and Klll•1using relation (2). The values are within I% of Jloc.1 shown in Fig. 5
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(except ut the free surface node), further substantiating the accunlcy of these parameters
obtained through the domain integrals.

In Fig. 7 we have plotted the local mixity factor Mil of (4), Since the field is anti­
symmetrical and K\"""·::;:: 0 (KIt"· is never zero in the present case), the other mixity
parameter is unity (M", ::;:: I) through-thickness. With this condition, Mo depends only on
KIt"' and Kl'if"· ; MIl::;:: I corresponds to pure Mode II while Mo =0 corresponds to pure
Mode [If. The curves in Fig. 7 show pure Mode [I at the symmetry-plane (X3/t ::;:: 0) and
decre'lsing values of Mo towards the free surface for all values of I'. Since the Mode III
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an!-lular stress distrihuliuns ;Ire shuwn with dashed lines ti.r comparison.

contribution is due to the Poisson's clfect of the material, the relative strength of Kllla' is
greater for larger values of v.

3.3. Near-lip tlsY"'plOlic condilion
If the normal out-of-plane strain component, l:n, is bounded or less singular than 1/

j; along the crack front, then a poinlwise two-dimensional condition should emerge as the
crack front is approached. Thus, asymptotically, a l/j; singular stress solution (I) will
prevail near the crack front. The behavior of this strain component is very similar to that
obtained in the previous Mode I analysis. For very small r/I the relative value of en (as
compared to a nonn of in-plane strain components) approaches zero in almost identical
manner for all the non-zero Poisson's ratios.

The complete stress field very near the crack tip (r/I = 0:0015) is shown in Fig. 8. The
components of computed stress are normalized by Kft' and are plotted over the angular
range 0 < 0 < 1t for v = 0.30. The angular distributions fl~ and fg' of (I) are shown with
dashed lines. Since the field is a mixture of Modes (( and 111, these functions are weighted
by respective local stress intensity factors obtained earlier from the domain integrals. For
each stress component, Fig. 8(a) shows good agreement between the computed stress and
the 2-D solution at the mid-plane, x3/1 = 0.050. The values of KIi"1 and KI':f"1 at this crack
front location are indicated in the figure. In Fig. 8(b), the same variables are similarly
plotted near the free surface, X)/I = 0.487, where there is a much greater Mode III influence.
These results confirm the assertion that the asymptotic stress field along a crack front is
indeed characterized by singular K-field solutions as in (I).

The agreement with the local K-field solution deteriorates as the radial distance from
the crack front increases. The deterioration is most evident in the decay of 0'3J from the
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plane strain constraint. Based on comparisons of the complete and asymptotic solutions.
we conclude that K-fields (mixed-mode) exist along the 3-D crack front within the radius
of approximately 0.0051 for a thin plate under general loading conditions. similar to that
found in the Mode [ analysis.

3.4. Corner singularity field
At a point sufficiently close to the normal intersection of crack front and free surface.

the asymptotic deformation field should be characterized by the corner singularity field of
a quarter-infinite crack plane in a half-space. According to Benthem (1977). the stress in
the corner singularity field may be expressed in a separable form as

(14)

where ;. is the coefficient of stress singularity. gij is a dimensionless angular function
depending on the Poisson's ratio. and spherical coordinates centered at the vertex are

( 15)

This asymptotic form was also shown by Bazant and Estenssoro (1979). In a previous
analysis of the symmetrical corner field. Nakamura and Parks (1988) introduced the corner
stress intensity factor. J4. as a scaling constant in eqn (14). Furthermore. its relationship
with the local stress intensity factor ncar the intersection was shown to be

( 16)

Here Jd has the dimension [(1'1 .I] «(1: stress; I: length dimensions). Using a similar idea.
the stress field under more general loading conditions can be given in terms of a complex
corner stress intensity factor. For mixed-mode fields. the stress ncar the intersection may
be expressed in terms of dominant symmetrical and antisymmetrical corner singularities as

(17)

Here Jds [same as Jd in (16)] and JdA arc the corner stress intensity factors corresponding
to the symmetrical and antisymmetrical fields. respectively. Also. ).s is the eigenvalue for
symmctricul fields. und AA is the eigenvalue for antisymmetrical fields. The leading roots
range over -0.5 ~ )'5 ~ -0.332 and -0.5 ~ AA ~ -0.646 for 0 ~ v ~ 0.5. respt-'Ctively
(Benthem. 1977. 1980; Bazant and Estenssoro. 1979). The dimensionless angular functions
if, and g~ also depend on v. For v =F O. these values of ). suggest that the second term in
(17) dominates as p -+ 0 under any mixed-mode conditions. and in general. the asymptotic
field is pure antisymmetrical at the intersection. On the free surface (lP = 90'). p = r. und
the stress singularity (in r) is more severe than the I/j'; singularity observed within the
interior of plate. except when the local stress field is exactly symmetrical.

A complete relationship between the stress intensity factors and the corner stress
intensity factors can be expressed in a fashion similar to (16) as

Kl,,,,a'(=) = 94s=.I.+ 1/2

Kl'ial (=) = :.JdA=.I" + 1/2 for =-+ O.

( 18)

Here R(v) is a dimensionless factor equivalent to the ratio of KII,a' to KII",a'. and it is a
function of ollly Poisson's ratio. Equations (18) suggest that the local stress intensity factor
tends to zero in a symmetrical field and tends to infinity in an antisymmetrical field for
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small =and \' # 0 (see Fig, 6). From (I), (17) and (18), we can also determine the relation­
ships between angular functions j;j and gij to be

(19)

Here 1:,(0), 1:)(0) and 1::'(0) .tre the plane strain Mode I and (( and anti-plane Mode III
angul.tr distribution ofstress given in (I), and, unlike the functions gil' they arc independent
of l'.

In order to determine the dominance ofsuch corner singularity field in a finite thickness
plate, Jlu.:al was plotted on a log-log scale in Fig. 9(a). The computed value of jlocal was
employed since it is expected to be more accumte than KI....;al or Kli7al near the free surface.
If (18) holds true ncar the free surface of the thin plate, Jlu.:al should be proportional to
=2.. , + I for small = [from (2)]. The small circles in the figure indicate Jlocal at the mid-locations
of element layers along the erack front. and the tangent of each curve corresponds to the
exponent of =. Also plotted in the figure arc the straight lines whose slopes arc 2(A'A + 1/2)
for the respective Poisson's ratios. The values of )'A given by Benthem arc depicted in the
inset. The curves arc nearly straight for =/t < 0.03, and the agreement with Benthem's
solutions is very good for all the Poisson's ratios. A similar figure is shown in Fig. 9(b)
from results of the Mode I analysis (Nakamura and Parks, 1988) for reference. Based on
the behaviors of J ncar a corner as shown in Fig. 9, we tentatively concludc that thc corner
singularity field in a thin plate dominates within the spherical radius of pIt::: 0.03 from the
intersection for all the (non-zero) Poisson's ratios and both symmetrical and anti­
symmetrical fields.

From the computed values of local stress intensity factor very ncar the intersection
(=/1 < 0.03), we can detcrmine the amplitude ofeorner stress intensity factor for a thin plate
using (I8). The factor JIA • normalized with Kf!' and rl." + 1/2, is plotted as a function of v in
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Fig. 10(<1). These solutions <Ire unil'ersal in the sense th'lt if a plate satisfies the lhin pltlte
requirements, they arc independent of any in-plane dimensions of the plate. For reference,
we haw included .Ms, normalized with Kl''' and t"+ 1/2, from the previous analysis, the thin
plate under in-plun..: symmetric<llload (far-field Mode I), in the same figure.

As stated by Benthem (1980), Modes ({ and III cannot occur independently at the
intersection. and the ratio of KI~'1 to Klf" is fixed for a given Poisson's ratio. [Baiant and
Estenssoro (1979) cite a privute communication from L. M. Keer as also reaching this
conclusion.] For the case of non-normal intersection, the limiting ratio also depends on the
crack edge angle and crack plane angle, as indicated in Baiant and Estenssoro (1979). The
function R(v) may be obtuined from the computed local stress intensity factors near the
free surf<lce. In terms of the mixity parameter given in (4), it is

R(v) ->~Itan [~MII(:;V)] as : -> O. (20)

Based on the limiting values of Mil at .'1:3/1 = 0.5 shown in Fig. 7, R(v) are determined and
plotted in Fig. lO(b). (The sign of R is arbitrary as it depends on the choice ofcoordinate's
direction.) The value given by Benthem (1980). from his stress intensity factors, is
R(v) = 0.50 for v = 0.30. which is in good agreement with that found here. We emphasize
that the relative strength of the Mode II and III stress intensity factors near the corner.
while depending on v. is independent of loading conditions. We have also applied other
antisymmetrical loading boundary conditions to crack meshes of this sort. While the
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resulting local fields were quite different in nature, the ratio R or the local mixity parameter
M~ near the corner was always in good agreement with the result shown in Fig. 10(b),
further substantiating the generality of the result.

4. DISCUSSION

The results of a thin plate under remote Mode II loading show strong 3-0 effects up
to a radial distance of approximately half the plate thickness from the crack front and
weaker through-thickness variations of stress field within 0.5 < r/t < 1.5. These values are
consistent with the results found in the analysis of a thin plate under Mode I loading.

We have also shown that the asymptotic stress field along the crack front is indeed
characterized by the K·field (mixed-mode) solutions, and the corresponding stress intensity
factors can be successfully computed from finite element results using the conservation and
domain integrals. The domain of such near crack front K-field extends approximately 0.5%
of the thickness in the radial direction at the mid-plane. The extracted values of stress
intensity factor indicate the magnitude of the 1/';;- singular field to be greater towards the
free surface. a trend completely opposite to the Mode I results. This result may imply that,
under antisymmetrical or any mixed-mode loading conditions, first fracture initiation occurs
at the edge of the crack front (corner point) instead of at a interior location of the plate.

Near the intersection of the crack front and free surface, the computed field approaches
the asymptotic antisymmetrical solutions given by Benthem (1980) and Bazant and
Estenssoro (1979). The corner stress field under general loading conditions is expressed in
terms of symmetrical and antisymmetrical corner stress intensity factors. It appears that
the corner singularity field dominates up to the radial dist-.tnce of 3% of the thickness of a
thin plate under any type of loading condition.

At the exact corner point, the standard intensity factors of fracture mechanics lose
their meaning, sincc a I/Jr singular lield genemlly docs not exist. However, the limiting
value of the ratio of K\'I'o' to K\'j'°' docs exist, ,lOd it varies depending on v and on the angles
of crack edge and craek plane, as discussed in Baiant and Estenssoro (1979). It is possible
to lind a crack intersection (edge) angle for a given crack plane angle and Poisson's ratio
to have a finite energy release mte and invariant stress intensity factor for small =(Bazant
and Estenssoro. 1979). For the present geometry of perpendicular intersecting angle and
zero inclined crack plane angle. such a condition occurs when Poisson's ratio is zero.

As long as the antisymmetrical corner stress intensity factor is not zero (dtA # 0), the
second term dominates in (17), and higher limiting stresses prevail at the corner. This
suggests that, if an existing crack front is nearly straight, crack initiation under mixed-mode
loading would tend to begin near the intersection of crack front and free surface. Such
phenomena wen: indeed observed il) a recent experimental study by Aoki et al. (1989). who
noted shear crack emanations from the edges under various far-field mixed-mode (I and
II) conditions.

In homogeneous plates subject to mode II loading, extended cracking in the initial
plane is not expected, as generally the crack will kink out of its prior plane. One case where
in-plane "cracking" docs occur is the propagation of the slipping/locked boundary along
strike-slip faults. Our analysis of a through-crack making an orthogonal intersection with
the free surface resulted in extremely large stress intensities near the surface. It is thus
natural to assume that, at the surface, an actual slipping boundary would extend further
into the locked portion than it would at mid-plate depth, resulting in an unfamiliar (as
compared to advancing mode I crack fronts) convex shape. Indeed, Rice (1988) has noted
that this interpretation of our results is consistent with seismic and geodetic data at the
boundaries (near Parkfield and San Juan Batista, California) of a slipping portion of the
San Andreas.
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